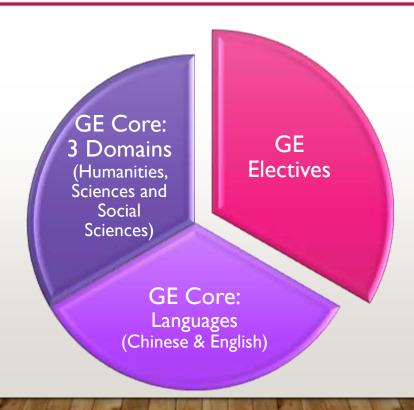


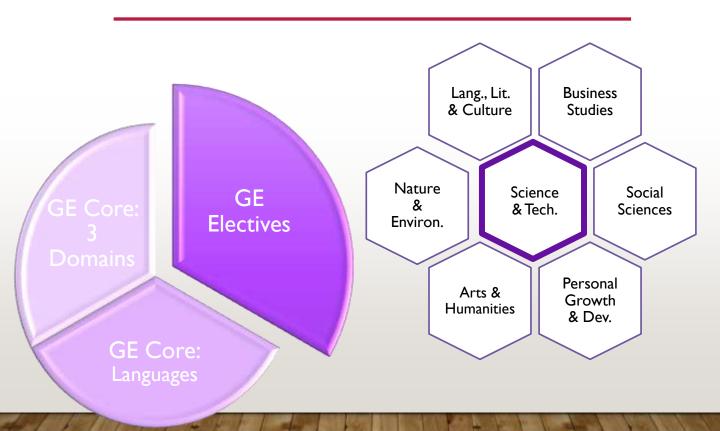
DR. ANGUS LAW

BSC (CUHK); PHD (CUHK)

Teaching Fellow
School of General Education
and Languages
(SGEL)
Technological and Higher
Education Institute


of Hong Kong

(THEi)


LEARNING BY EXPERIENCING –

THE MAKING OF CITIZEN SCIENTISTS

THEI GE CURRICULUM

GEE SUB-DOMAINS

PLANTS & HUMAN CIVILISATIONS

- In general, students' understand on plants is limited to its primitive usage: photosynthesis (food and oxygen), fiber (clothing), etc.
- A holistic view with world vision will be needed to fully unveil the role of plants
- Critical analysis on the role of plants as single most influential factor in:
 - Making us human beings
 - Dominating rise and fall of civilisations
 - Continuity of human societies

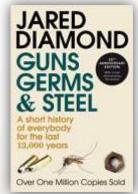
AREAS OF INTEREST

- Plants as our green friends
 (Fundamental sciences)
- Seed of change plants that changed the course of human history

(History, from a storytelling approach)

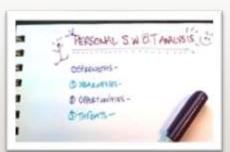
Seed of culture – plants that shaped the cultures of civilizations

(A scientific reflection of life)


 Seed of future – How plants continue to boost mankind transformation (A glimpse into the future)

OUR SCOPE & PERSPECTIVES

TEACHING & LEARNING ACTIVITIES


Readings

Group Discussion

Documentaries / Movies

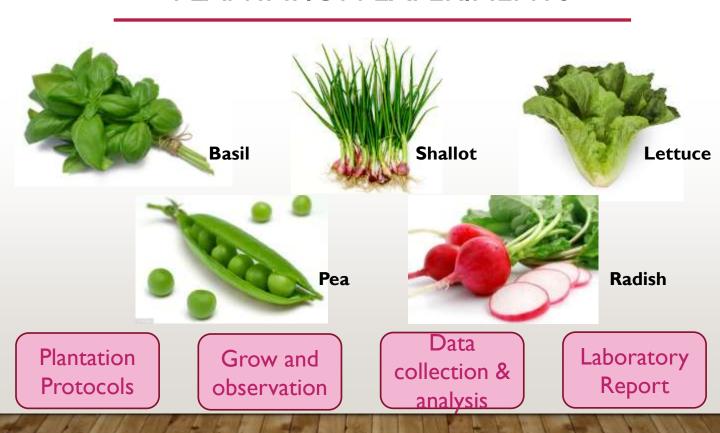
Self-reflection exercise

Field trip / Site Visit

Experiments!

AIM OF PLANTATION EXPERIMENT

- Understand plants development with real experience with plants
 - E.g., seed germination, root and shoot differentiation and development, stem cells, flowering and seed formation, etc.)
- Analyse how agriculture have driven the evolution of human civilisations
 - Analysis of plant growth and harvest by correlation with abiotic and biotic factors
 - Growing plants instrumental to human civilisations enhance their achievement of module ILOs
 - Develop the habits of scientific mindset and participate in the citizen scientists project



Pea colour and Mendel's genetics

Famers in the semester, Citizen scientists in the future

PLANTATION EXPERIMENTS

EXPERIENTIAL LEARNING CYCLE

Observation and working as described in the protocol / improvement as discussed with group members. Measure growth parameters

Concrete

Experimentation with new pest control strategies / setting up green house / autoirrigation system

Active Experimentation

(planning / trying out what you have learned)

Reflective Observation

(reviewing / reflecting on the experience) (3-min verbal presentation to the whole class/group/week)

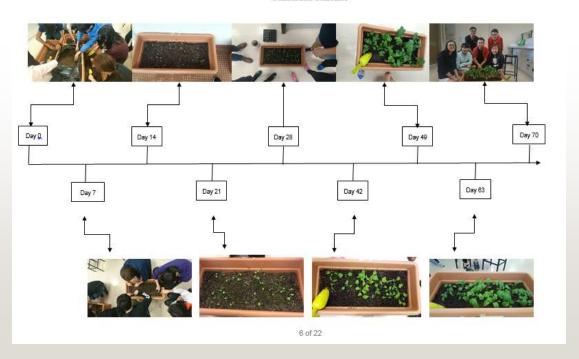
Comparison with past data and with other groups – spotting strength and weaknesses

Problem-solving: improvement as reasoned from L&T materials, discussion and make improvement / new suggestions!

STAGES OF PLANTS

Observation of plants growth

- + Plant Biology Explained
- + Biometric data measurement


Day 70

TIMELINE

GEE 5409 Plants and Human Civilisations

Experiment Report

Plantation Timeline

DATA ANALYSIS

1.4 Photo diary of plant growth

GEE 5409 Plants and Human Chilisations

2.3 Growth Rate (Day 21 to Day 70)

2.3.1 Height:

Growth Height (Day 21 - Day 70)

Day 21 (28/2)			Day 25 (4/3)		
No. of	Averaged	Standard	No. of	Averaged	Standard
seedlings	height (cm)	Deviation	seedlings	height (cm)	Deviation
28	1.3	0.5312	27	1.1556	0.5747

	Day 28 (7/3)			Day 31 (10/3)		
Г	No. of	Averaged	Standard	No. of	Averaged	Standard
	seedlings	height (cm)	Deviation	seedlings	height (cm)	Deviation
	17	1.6	0.5123	17	2.0059	0.7093

	Day 42 (21/3)			Day 49 (28/3)		
	No. of	Averaged	Standard	No. of	Averaged	Standard
	seedlings	height (cm)	Deviation	seedlings	height (cm)	Deviation
	14	2.1714	0.4937	14	2.6429	0.4033

Day 63 (11/4)			Day 70 (18/4)		
No. of	Averaged	Standard	No. of	Averaged	Standard
seedlings	height (cm)	Deviation	seedlings	height (cm)	Deviation
14	3.2214	0.4694	14	3.5429	0.4910

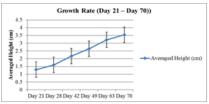


Figure 2: Growth Rate (Day 21 - Day 70)

8 of 22

Through trial and error, and knowledge learned in the module...

Due to the cold weather during the first three weeks of February and the basil seeds needing a temperature of 20-25°C to optimally grow, we put plastic bags over the planter to reduce heat loss during the day and night. On the 15th February 2017, due to a persistent cold weather (average temperature is below 20°C), the seeds still have not germinated. We used plastic bags covering the pot in order to form a simple greenhouse and provide a more suitable growing atmosphere for the basil. Photo are taken by Kaeden, Tracy, Samuel,

EXPERIENTIAL LEARNING

Students used their ingenuity to overcome the cold weather and enhance the germination rate of Basil

AUTO-IRRIGATION SYSTEM

Environmental Engineers of the auto-irrigation system

(Water tank was too heavy for transportation, so the students have detached the tank before transporting the pot to the lab for measuring growth parameters)

Pipeline for the auto-irrigation system

PEA GROWING FRAME

JOY OF HARVEST

STUDENTS' FEEDBACK

- Students rated the module very positive in SFQ Qs
 - Overall learning experience 8.21/10 cf. institute average 7.52/10
- Opened-ended feedback:
 - "Very board and interesting, deep and full of details."
 - "It has covered a wide range of knowledge related to plants & civilization, and link two part closely together"
 - "Planting activities are fun, Engineering student didn't try it before."
 - "Visual aids and powerpoint slides are great. The use of touching real plants is interesting."

THANK YOU!

EXTRA SLIDES

GEE PROGRAM ILO

- Demonstrate a capacity for critical thinking, self-reflection, and analysis;
- Recognise ethically, socially and globally responsible action;
- Engage in self-directed learning;
- Demonstrate effective oral and written communication skills;
- Engage in creative problem-solving;
- Demonstrate interpersonal skills associated with leadership and teamwork; and
- Apply the broad principles of the Humanities, Sciences, and Social Sciences to practical problems and contemporary issues.